--- title: "Tutorial" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Tutorial} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r loadPackage} library(rbioacc) # library(ggplot2) ``` ## A Simple Example: *Male Gammarus Single* ### Data Load the data set with the function `data()`, define the duration of the exposure `time_accumulation`, and check if the data set is correctly imported with the function `modelData()`. Here the data set is called *Male Gammarus Single* ```{r dataMGS} data("Male_Gammarus_Single") ``` ### Inference The function `fitTK()` performs the inference process. ```{r fitMGS, cache=TRUE, results="hide"} modelData_MGS <- modelData(Male_Gammarus_Single, time_accumulation = 4) fit_MGS <- fitTK(modelData_MGS, iter = 10000) ``` ### Results #### TK parameters The 4 MCMC are stored in the object `fitMCMC`. The quantiles for each TK parameter can be obtained with the `quantile()` function. ```{r statsMGS} quantile_table(fit_MGS) ``` ```{r plotMGS, fig.height=4, fig.width=5} plot(fit_MGS) ``` ```{r ppcMGS, fig.height=4, fig.width=5} ppc(fit_MGS) ``` ## Male Gammarus Merged ```{r fitMGM708, cache=TRUE, results="hide", eval=FALSE} data("Male_Gammarus_Merged") data_MGM708 <- Male_Gammarus_Merged[Male_Gammarus_Merged$expw == 7.08021e-05, ] modelData_MGM708 <- modelData(data_MGM708, time_accumulation = 4) fit_MGM708 <- fitTK(modelData_MGM708, iter = 10000) ``` ```{r statMGM708, eval=FALSE} quantile_table(fit_MGM708) ``` ```{r plotMGM708, fig.height=4, fig.width=5, eval=FALSE} plot(fit_MGM708) ``` ```{r ppcMGM708, fig.height=4, fig.width=5, eval=FALSE} ppc(fit_MGM708) ``` ```{r fitMGM141, cache=TRUE, results="hide", eval=FALSE} data_MGM141 <- Male_Gammarus_Merged[Male_Gammarus_Merged$expw == 1.41604e-04, ] modelData_MGM141 <- modelData(data_MGM141, time_accumulation = 7) fit_MGM141 <- fitTK(modelData_MGM141, iter = 20000) ``` ```{r statMGM141, eval=FALSE} quantile_table(fit_MGM141) ``` ```{r plotMGM141, fig.height=4, fig.width=5, eval=FALSE} plot(fit_MGM141) ``` ```{r ppcMGM141, fig.height=4, fig.width=5, eval=FALSE} ppc(fit_MGM141) ``` ```{r fitMGM283, cache=TRUE, results="hide", eval=FALSE} data_MGM283 <- Male_Gammarus_Merged[Male_Gammarus_Merged$expw == 2.83208e-04, ] modelData_MGM283 <- modelData(data_MGM283, time_accumulation = 4) fit_MGM283 <- fitTK(modelData_MGM283, iter = 10000) ``` ```{r statMGM283, eval=FALSE} quantile_table(fit_MGM283) ``` ```{r plotMGM283, fig.height=4, fig.width=5, eval=FALSE} plot(fit_MGM283) ``` ```{r ppcMGM283, fig.height=4, fig.width=5, eval=FALSE} ppc(fit_MGM283) ``` ## Male Gammarus seanine with growth ```{r fitMGSG, eval=FALSE} data("Male_Gammarus_seanine_growth") modelData_MGSG <- modelData(Male_Gammarus_seanine_growth, time_accumulation = 1.417) fit_MGSG <- fitTK(modelData_MGSG, iter = 10000) ``` ```{r statsMGSG, eval=FALSE} quantile_table(fit_MGSG) ``` ```{r plotMGSG, fig.height=6, fig.width=7, eval=FALSE} plot(fit_MGSG) ``` ```{r ppcMGSG, fig.height=6, fig.width=7, eval=FALSE} ppc(fit_MGSG) ``` ## Oncorhynchus ```{r fitOT440, cache=TRUE, results="hide", eval=FALSE} data("Oncorhynchus_two") # Pimephales_two data_OT440 = Oncorhynchus_two[Oncorhynchus_two$expw == 0.00440,] modelData_OT440 <- modelData(data_OT440, time_accumulation = 49) fit_OT440 <- fitTK(modelData_OT440, iter = 10000) ``` ```{r statOT440, eval=FALSE} quantile_table(fit_OT440) ``` ```{r plotOT440, fig.height=4, fig.width=5, eval=FALSE} plot(fit_OT440) ``` ```{r ppcOT440, fig.height=4, fig.width=5, eval=FALSE} ppc(fit_OT440) ``` ```{r fitOT041, cache=TRUE, results="hide", eval=FALSE} data_OT041 <- Oncorhynchus_two[Oncorhynchus_two$expw == 0.00041,] modelData_OT041 <- modelData(data_OT041, time_accumulation = 49) fit_OT041 <- fitTK(modelData_OT041, iter = 10000) ``` ```{r statOT041, eval=FALSE} quantile_table(fit_OT041) ``` ```{r plotOT041, fig.height=4, fig.width=5, eval=FALSE} plot(fit_OT041) ``` ```{r ppcOT041, fig.height=4, fig.width=5, eval=FALSE} ppc(fit_OT041) ``` ## Chironomus benzo-a-pyrene ```{r fitCB, cache=TRUE, results="hide", eval=FALSE} data("Chironomus_benzoapyrene") modelData_CB <- modelData(Chironomus_benzoapyrene, time_accumulation = 3) modelData_CB$unifMax = modelData_CB$unifMax * 100 fit_CB <- fitTK(modelData_CB, iter = 10000) ``` ```{r statCB, eval=FALSE} quantile_table(fit_CB) ``` ```{r plotCB, fig.height=4, fig.width=5, eval=FALSE} plot(fit_CB) ``` ```{r ppcCB, fig.height=4, fig.width=5, eval=FALSE} ppc(fit_CB) ``` # Prediction ```{r predictMGS, eval=FALSE} data("Male_Gammarus_Single") modelData_MGS <- modelData(Male_Gammarus_Single, time_accumulation = 4) fit_MGS <- fitTK(modelData_MGS, iter = 5000, chains = 3) # Data 4 prediction should respect the exposure routes data_4pred <- data.frame( time = 1:25, expw = 4e-5 ) predict_MGS <- predict(fit_MGS, data_4pred) plot(predict_MGS) ``` ```{r predictMGSG, eval=FALSE} # data("Male_Gammarus_seanine_growth") # modelData_MGSG <- modelData(Male_Gammarus_seanine_growth, time_accumulation = 4) # fit_MGSG <- fitTK(modelData_MGSG, iter = 5000, chains = 3) # # # Data 4 prediction should respect the exposure routes # data_4pred <- data.frame( time = 1:25, expw = 18 ) # predict_MGSG <- predict(fit_MGSG, data_4pred) # plot(predict_MGSG) ``` ```{r predictCC, eval=FALSE} data("Chiro_Creuzot") Chiro_Creuzot <- Chiro_Creuzot[Chiro_Creuzot$replicate == 1,] modelData_CC <- modelData(Chiro_Creuzot, time_accumulation = 1.0) fit_CC <- fitTK(modelData_CC, iter = 5000, chains = 3) # -------- quantile_table(fit_CC) # Data 4 prediction should respect the exposure routes data_4pred <- data.frame( time = 1:25, expw = 18, exps = 1200, exppw = 15 ) predict_CC <- predict(fit_CC, data_4pred) plot(predict_CC) ```