We present very quickly the main optimization methods. Please refer to Numerical Optimization (Nocedal & Wright, 2006) or Numerical Optimization: theoretical and practical aspects (Bonnans, Gilbert, Lemarechal & Sagastizabal, 2006) for a good introduction. We consider the following problem minxf(x) for x ∈ ℝn.
The Nelder-Mead method is one of the most well known derivative-free methods that use only values of f to search for the minimum. It consists in building a simplex of n + 1 points and moving/shrinking this simplex into the good direction.
The Nelder-Mead method is available in optim
. By
default, in optim
, α = 1, β = 1/2, γ = 2 and σ = 1/2.
For smooth non-linear function, the following method is generally used: a local method combined with line search work on the scheme xk + 1 = xk + tkdk, where the local method will specify the direction dk and the line search will specify the step size tk ∈ ℝ.
A desirable property for dk is that dk ensures a descent f(xk + 1) < f(xk). Newton methods are such that dk minimizes a local quadratic approximation of f based on a Taylor expansion, that is $q_f(d) = f(x_k) + g(x_k)^Td +\frac{1}{2} d^T H(x_k) d$ where g denotes the gradient and H denotes the Hessian.
The consists in using the exact solution of local minimization
problem dk = −H(xk)−1g(xk).
In practice, other methods are preferred (at least to ensure positive
definiteness). The method approximates the Hessian by a matrix Hk as a function
of Hk − 1,
xk, f(xk)
and then dk solves the
system Hkd = −g(xk).
Some implementation may also directly approximate the inverse of the
Hessian Wk
in order to compute dk = −Wkg(xk).
Using the Sherman-Morrison-Woodbury formula, we can switch between Wk and Hk.
To determine Wk, first it must verify the secant equation Hkyk = sk or yk = Wksk where yk = gk + 1 − gk and sk = xk + 1 − xk. To define the n(n − 1) terms, we generally impose a symmetry and a minimum distance conditions. We say we have a rank 2 update if Hk = Hk − 1 + auuT + bvvT and a rank 1 update if $H_k = H_{k-1} + a u u^T $. Rank n update is justified by the spectral decomposition theorem.
There are two rank-2 updates which are symmetric and preserve positive definiteness
In R
, the so-called BFGS scheme is implemented in
optim
.
Another possible method (which is initially arised from quadratic problems) is the nonlinear conjugate gradients. This consists in computing directions (d0, …, dk) that are conjugate with respect to a matrix close to the true Hessian H(xk). Directions are computed iteratively by dk = −g(xk) + βkdk − 1 for k > 1, once initiated by d1 = −g(x1). βk are updated according a scheme:
There exists also three-term formula for computing direction dk = −g(xk) + βkdk − 1 + γkdt
for t < k. A
possible scheme is the Beale-Sorenson update defined as $\beta_k = \frac{ g_k^T (g_k-g_{k-1}
)}{d^T_{k-1}(g_{k}- g_{k-1})}$ and $\gamma_k = \frac{ g_k^T (g_{t+1}-g_{t}
)}{d^T_{t}(g_{t+1}- g_{t})}$ if k > t + 1 otherwise
γk = 0 if
k = t. See Yuan
(2006) for other well-known schemes such as Hestenses-Stiefel, Dixon or
Conjugate-Descent. The three updates (Fletcher-Reeves, Polak-Ribiere,
Beale-Sorenson) of the (non-linear) conjugate gradient are available in
optim
.
Let ϕk(t) = f(xk + tdk) for a given direction/iterate (dk, xk). We need to find conditions to find a satisfactory stepsize tk. In literature, we consider the descent condition: ϕk′(0) < 0 and the Armijo condition: ϕk(t) ≤ ϕk(0) + tc1ϕk′(0) ensures a decrease of f. Nocedal & Wright (2006) presents a backtracking (or geometric) approach satisfying the Armijo condition and minimal condition, i.e. Goldstein and Price condition.
This backtracking linesearch is available in optim
.
To simplify the benchmark of optimization methods, we create a
fitbench
function that computes the desired estimation
method for all optimization methods. This function is currently not
exported in the package.
The density of the beta distribution is given by $$ f(x; \delta_1,\delta_2) = \frac{x^{\delta_1-1}(1-x)^{\delta_2-1}}{\beta(\delta_1,\delta_2)}, $$ where β denotes the beta function, see the NIST Handbook of mathematical functions https://dlmf.nist.gov/. We recall that β(a, b) = Γ(a)Γ(b)/Γ(a + b). There the log-likelihood for a set of observations (x1, …, xn) is $$ \log L(\delta_1,\delta_2) = (\delta_1-1)\sum_{i=1}^n\log(x_i)+ (\delta_2-1)\sum_{i=1}^n\log(1-x_i)+ n \log(\beta(\delta_1,\delta_2)) $$ The gradient with respect to a and b is $$ \nabla \log L(\delta_1,\delta_2) = \left(\begin{matrix} \sum\limits_{i=1}^n\ln(x_i) - n\psi(\delta_1)+n\psi( \delta_1+\delta_2) \\ \sum\limits_{i=1}^n\ln(1-x_i)- n\psi(\delta_2)+n\psi( \delta_1+\delta_2) \end{matrix}\right), $$ where ψ(x) = Γ′(x)/Γ(x) is the digamma function, see the NIST Handbook of mathematical functions https://dlmf.nist.gov/.
R
implementationAs in the fitdistrplus
package, we minimize the opposite
of the log-likelihood: we implement the opposite of the gradient in
grlnL
. Both the log-likelihood and its gradient are not
exported.
## [1] -133 317
Define control parameters.
Call mledist
with the default optimization function
(optim
implemented in stats
package) with and
without the gradient for the different optimization methods.
## BFGS NM CGFR CGPR CGBS L-BFGS-B NM-B G-BFGS
## 14 14 14 14 14 14 14 14
## G-CGFR G-CGPR G-CGBS G-BFGS-B G-NM-B G-CGFR-B G-CGPR-B G-CGBS-B
## 14 14 14 14 14 14 14 14
In the case of constrained optimization, mledist
permits
the direct use of constrOptim
function (still implemented
in stats
package) that allow linear inequality constraints
by using a logarithmic barrier.
Use a exp/log transformation of the shape parameters δ1 and δ2 to ensure that the shape parameters are strictly positive.
dbeta2 <- function(x, shape1, shape2, log)
dbeta(x, exp(shape1), exp(shape2), log=log)
#take the log of the starting values
startarg <- lapply(fitdistrplus:::startargdefault(x, "beta"), log)
#redefine the gradient for the new parametrization
grbetaexp <- function(par, obs, ...)
grlnlbeta(exp(par), obs) * exp(par)
expopt <- fitbench(x, distr="beta2", method="mle", grad=grbetaexp, start=startarg)
## BFGS NM CGFR CGPR CGBS G-BFGS G-CGFR G-CGPR G-CGBS
## 14 14 14 14 14 14 14 14 14
#get back to original parametrization
expopt[c("fitted shape1", "fitted shape2"), ] <- exp(expopt[c("fitted shape1", "fitted shape2"), ])
Then we extract the values of the fitted parameters, the value of the corresponding log-likelihood and the number of counts to the function to minimize and its gradient (whether it is the theoretical gradient or the numerically approximated one).
Results are displayed in the following tables: (1) the original
parametrization without specifying the gradient (-B
stands
for bounded version), (2) the original parametrization with the (true)
gradient (-B
stands for bounded version and -G
for gradient), (3) the log-transformed parametrization without
specifying the gradient, (4) the log-transformed parametrization with
the (true) gradient (-G
stands for gradient).
BFGS | NM | CGFR | CGPR | CGBS | L-BFGS-B | NM-B | |
---|---|---|---|---|---|---|---|
fitted shape1 | 2.665 | 2.664 | 2.665 | 2.665 | 2.665 | 2.665 | 2.665 |
fitted shape2 | 0.731 | 0.731 | 0.731 | 0.731 | 0.731 | 0.731 | 0.731 |
fitted loglik | 114.165 | 114.165 | 114.165 | 114.165 | 114.165 | 114.165 | 114.165 |
func. eval. nb. | 15.000 | 47.000 | 191.000 | 221.000 | 235.000 | 8.000 | 92.000 |
grad. eval. nb. | 11.000 | NA | 95.000 | 115.000 | 171.000 | 8.000 | NA |
time (sec) | 0.005 | 0.004 | 0.032 | 0.038 | 0.052 | 0.004 | 0.011 |
G-BFGS | G-CGFR | G-CGPR | G-CGBS | G-BFGS-B | G-NM-B | G-CGFR-B | G-CGPR-B | G-CGBS-B | |
---|---|---|---|---|---|---|---|---|---|
fitted shape1 | 2.665 | 2.665 | 2.665 | 2.665 | 2.665 | 2.665 | 2.665 | 2.665 | 2.665 |
fitted shape2 | 0.731 | 0.731 | 0.731 | 0.731 | 0.731 | 0.731 | 0.731 | 0.731 | 0.731 |
fitted loglik | 114.165 | 114.165 | 114.165 | 114.165 | 114.165 | 114.165 | 114.165 | 114.165 | 114.165 |
func. eval. nb. | 22.000 | 249.000 | 225.000 | 138.000 | 40.000 | 92.000 | 471.000 | 403.000 | 255.000 |
grad. eval. nb. | 5.000 | 71.000 | 69.000 | 43.000 | 6.000 | NA | 96.000 | 104.000 | 58.000 |
time (sec) | 0.009 | 0.075 | 0.071 | 0.045 | 0.019 | 0.020 | 0.129 | 0.135 | 0.076 |
BFGS | NM | CGFR | CGPR | CGBS | |
---|---|---|---|---|---|
fitted shape1 | 2.665 | 2.664 | 2.665 | 2.665 | 2.665 |
fitted shape2 | 0.731 | 0.731 | 0.731 | 0.731 | 0.731 |
fitted loglik | 114.165 | 114.165 | 114.165 | 114.165 | 114.165 |
func. eval. nb. | 8.000 | 41.000 | 37.000 | 49.000 | 47.000 |
grad. eval. nb. | 5.000 | NA | 19.000 | 39.000 | 33.000 |
time (sec) | 0.005 | 0.003 | 0.008 | 0.012 | 0.011 |
G-BFGS | G-CGFR | G-CGPR | G-CGBS | |
---|---|---|---|---|
fitted shape1 | 2.665 | 2.665 | 2.665 | 2.665 |
fitted shape2 | 0.731 | 0.731 | 0.731 | 0.731 |
fitted loglik | 114.165 | 114.165 | 114.165 | 114.165 |
func. eval. nb. | 21.000 | 175.000 | 146.000 | 112.000 |
grad. eval. nb. | 5.000 | 39.000 | 47.000 | 35.000 |
time (sec) | 0.011 | 0.044 | 0.049 | 0.038 |
Using llsurface
, we plot the log-likehood surface around
the true value (green) and the fitted parameters (red).
llsurface(min.arg=c(0.1, 0.1), max.arg=c(7, 3), xlim=c(.1,7),
plot.arg=c("shape1", "shape2"), nlev=25,
lseq=50, data=x, distr="beta", back.col = FALSE)
points(unconstropt[1,"BFGS"], unconstropt[2,"BFGS"], pch="+", col="red")
points(3, 3/4, pch="x", col="green")
We can simulate bootstrap replicates using the bootdist
function.
b1 <- bootdist(fitdist(x, "beta", method = "mle", optim.method = "BFGS"),
niter = 100, parallel = "snow", ncpus = 2)
summary(b1)
## Parametric bootstrap medians and 95% percentile CI
## Median 2.5% 97.5%
## shape1 2.73 2.272 3.283
## shape2 0.75 0.652 0.888
The p.m.f. of the Negative binomial distribution is given by $$ f(x; m,p) = \frac{\Gamma(x+m)}{\Gamma(m)x!} p^m (1-p)^x, $$ where Γ denotes the beta function, see the NIST Handbook of mathematical functions https://dlmf.nist.gov/. There exists an alternative representation where μ = m(1 − p)/p or equivalently p = m/(m + μ). Thus, the log-likelihood for a set of observations (x1, …, xn) is $$ \log L(m,p) = \sum_{i=1}^{n} \log\Gamma(x_i+m) -n\log\Gamma(m) -\sum_{i=1}^{n} \log(x_i!) + mn\log(p) +\sum_{i=1}^{n} {x_i}\log(1-p) $$ The gradient with respect to m and p is $$ \nabla \log L(m,p) = \left(\begin{matrix} \sum_{i=1}^{n} \psi(x_i+m) -n \psi(m) + n\log(p) \\ mn/p -\sum_{i=1}^{n} {x_i}/(1-p) \end{matrix}\right), $$ where ψ(x) = Γ′(x)/Γ(x) is the digamma function, see the NIST Handbook of mathematical functions https://dlmf.nist.gov/.
R
implementationAs in the fitdistrplus
package, we minimize the opposite
of the log-likelihood: we implement the opposite of the gradient in
grlnL
.
#(2) negative binomial distribution
n <- 200
trueval <- c("size"=10, "prob"=3/4, "mu"=10/3)
x <- rnbinom(n, trueval["size"], trueval["prob"])
hist(x, prob=TRUE, ylim=c(0, .3), xlim=c(0, 10))
lines(density(x), col="red")
points(min(x):max(x), dnbinom(min(x):max(x), trueval["size"], trueval["prob"]),
col = "green")
legend("topright", lty = 1, col = c("red", "green"),
legend = c("empirical", "theoretical"), bty="n")
Define control parameters and make the benchmark.
ctr <- list(trace = 0, REPORT = 1, maxit = 1000)
unconstropt <- fitbench(x, "nbinom", "mle", grad = grlnlNB, lower = 0)
## BFGS NM CGFR CGPR CGBS L-BFGS-B NM-B G-BFGS
## 14 14 14 14 14 14 14 14
## G-CGFR G-CGPR G-CGBS G-BFGS-B G-NM-B G-CGFR-B G-CGPR-B G-CGBS-B
## 14 14 14 14 14 14 14 14
unconstropt <- rbind(unconstropt,
"fitted prob" = unconstropt["fitted mu", ] / (1 + unconstropt["fitted mu", ]))
In the case of constrained optimization, mledist
permits
the direct use of constrOptim
function (still implemented
in stats
package) that allow linear inequality constraints
by using a logarithmic barrier.
Use a exp/log transformation of the shape parameters δ1 and δ2 to ensure that the shape parameters are strictly positive.
dnbinom2 <- function(x, size, prob, log)
dnbinom(x, exp(size), 1 / (1 + exp(-prob)), log = log)
# transform starting values
startarg <- fitdistrplus:::startargdefault(x, "nbinom")
startarg$mu <- startarg$size / (startarg$size + startarg$mu)
startarg <- list(size = log(startarg[[1]]),
prob = log(startarg[[2]] / (1 - startarg[[2]])))
# redefine the gradient for the new parametrization
Trans <- function(x)
c(exp(x[1]), plogis(x[2]))
grNBexp <- function(par, obs, ...)
grlnlNB(Trans(par), obs) * c(exp(par[1]), plogis(x[2])*(1-plogis(x[2])))
expopt <- fitbench(x, distr="nbinom2", method="mle", grad=grNBexp, start=startarg)
## BFGS NM CGFR CGPR CGBS G-BFGS G-CGFR G-CGPR G-CGBS
## 14 14 14 14 14 14 14 14 14
# get back to original parametrization
expopt[c("fitted size", "fitted prob"), ] <-
apply(expopt[c("fitted size", "fitted prob"), ], 2, Trans)
Then we extract the values of the fitted parameters, the value of the corresponding log-likelihood and the number of counts to the function to minimize and its gradient (whether it is the theoretical gradient or the numerically approximated one).
Results are displayed in the following tables: (1) the original
parametrization without specifying the gradient (-B
stands
for bounded version), (2) the original parametrization with the (true)
gradient (-B
stands for bounded version and -G
for gradient), (3) the log-transformed parametrization without
specifying the gradient, (4) the log-transformed parametrization with
the (true) gradient (-G
stands for gradient).
BFGS | NM | CGFR | CGPR | CGBS | L-BFGS-B | NM-B | |
---|---|---|---|---|---|---|---|
fitted size | 57.333 | 62.504 | 57.337 | 57.335 | 57.335 | 57.333 | 58.446 |
fitted mu | 3.440 | 3.440 | 3.440 | 3.440 | 3.440 | 3.440 | 3.440 |
fitted loglik | -402.675 | -402.674 | -402.675 | -402.675 | -402.675 | -402.675 | -402.675 |
func. eval. nb. | 2.000 | 39.000 | 2001.000 | 1001.000 | 1001.000 | 2.000 | 0.000 |
grad. eval. nb. | 1.000 | NA | 1001.000 | 1001.000 | 1001.000 | 2.000 | NA |
time (sec) | 0.002 | 0.003 | 0.201 | 0.169 | 0.168 | 0.002 | 0.003 |
fitted prob | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 |
G-BFGS | G-CGFR | G-CGPR | G-CGBS | G-BFGS-B | G-NM-B | G-CGFR-B | G-CGPR-B | G-CGBS-B | |
---|---|---|---|---|---|---|---|---|---|
fitted size | 57.333 | 57.333 | 57.333 | 57.333 | 57.333 | 58.446 | 57.333 | 57.333 | 57.333 |
fitted mu | 3.440 | 3.440 | 3.440 | 3.440 | 3.440 | 3.440 | 3.440 | 3.440 | 3.440 |
fitted loglik | -402.675 | -402.675 | -402.675 | -402.675 | -402.675 | -402.675 | -402.675 | -402.675 | -402.675 |
func. eval. nb. | 28.000 | 28.000 | 28.000 | 28.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
grad. eval. nb. | 1.000 | 1.000 | 1.000 | 1.000 | NA | NA | NA | NA | NA |
time (sec) | 0.008 | 0.002 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
fitted prob | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 |
BFGS | NM | CGFR | CGPR | CGBS | |
---|---|---|---|---|---|
fitted size | 57.335 | 62.320 | 58.595 | 60.173 | 60.875 |
fitted prob | 0.943 | 0.948 | 0.945 | 0.946 | 0.947 |
fitted loglik | -402.675 | -402.674 | -402.675 | -402.674 | -402.674 |
func. eval. nb. | 3.000 | 45.000 | 2501.000 | 2273.000 | 2272.000 |
grad. eval. nb. | 1.000 | NA | 1001.000 | 1001.000 | 1001.000 |
time (sec) | 0.004 | 0.002 | 0.226 | 0.219 | 0.219 |
G-BFGS | G-CGFR | G-CGPR | G-CGBS | |
---|---|---|---|---|
fitted size | 57.333 | 57.333 | 57.333 | 57.333 |
fitted prob | 0.943 | 0.943 | 0.943 | 0.943 |
fitted loglik | -402.675 | -402.675 | -402.675 | -402.675 |
func. eval. nb. | 18.000 | 44.000 | 39.000 | 39.000 |
grad. eval. nb. | 1.000 | 3.000 | 3.000 | 3.000 |
time (sec) | 0.007 | 0.003 | 0.002 | 0.002 |
Using llsurface
, we plot the log-likehood surface around
the true value (green) and the fitted parameters (red).
llsurface(min.arg = c(5, 0.3), max.arg = c(15, 1), xlim=c(5, 15),
plot.arg = c("size", "prob"), nlev = 25,
lseq = 50, data = x, distr = "nbinom", back.col = FALSE)
points(unconstropt["fitted size", "BFGS"], unconstropt["fitted prob", "BFGS"],
pch = "+", col = "red")
points(trueval["size"], trueval["prob"], pch = "x", col = "green")
We can simulate bootstrap replicates using the bootdist
function.
b1 <- bootdist(fitdist(x, "nbinom", method = "mle", optim.method = "BFGS"),
niter = 100, parallel = "snow", ncpus = 2)
summary(b1)
## Parametric bootstrap medians and 95% percentile CI
## Median 2.5% 97.5%
## size 57.33 57.33 57.33
## mu 3.46 3.24 3.72
Based on the two previous examples, we observe that all methods
converge to the same point. This is reassuring.
However, the number of function evaluations (and the gradient
evaluations) is very different from a method to another. Furthermore,
specifying the true gradient of the log-likelihood does not help at all
the fitting procedure and generally slows down the convergence.
Generally, the best method is the standard BFGS method or the BFGS
method with the exponential transformation of the parameters. Since the
exponential function is differentiable, the asymptotic properties are
still preserved (by the Delta method) but for finite-sample this may
produce a small bias.